
Q 19.16: Show that the acceleration of volume starting from rest is
D2(δV ) = Rabt

atbδV
where δV is an increment of volume, and D is the rate of change wrt the observer’s proper time
i.e. D = ta∇a, ta is the vector pointing in the observer’s proper time direction.

A: I did this first in an explicit way, which helps to see what’s going on. Then, I thought for
a long, long time, and I finally came up with a way to use Lie derivatives, which is after the
explicit derivation and shows nicely what Lie derivatives are about. But first the explicit way:

Suppose the observer is at the origin, at the center of a little rectangular solid with orthogonal
side vectors M, L and N in the x, y and z directions, and γ is the geodesic of the observer’s
world-line.

The worldline of a point on the boundary of the rectangular solid is a geodesic γ′, and after
a small time τ , γ′ is no longer pointing exactly in the time direction as defined by the observer
- that is, the points on the boundary have a small increment of velocity.

The point (τ, M/2, 0, 0) is on the boundary of the rectangular solid. After time τ the de-
viation of its geodesic from the observer’s geodesic is (M/2)τR010

d. So its velocity 4-vector is
(M/2)τR010

d + (1, 0, 0, 0), and its acceleration is (M/2)R010

d.
To get the volume acceleration, it’s necessary to integrate the accelerations of individual points

over the surface of the rectangular solid. But this is easy. Only the component of acceleration
normal to the surface matters, so to find the contributions to the volume acceleration from the
faces ⊥ to M, it’s only necessary to integrate F bR0b0

1 over the faces ⊥ to M, where F is a position
vector of a point on the face.

Since ((0, M/2, 0, 0) + v)bR0b0
1 + ((0, M/2, 0, 0) − v)bR0b0

1 = MR010

1, the integral over the
faces ⊥ to M is just MR010

1LN. Adding the integrals over all the faces, D2(δV ) = R0b0
bMLN =

R0b0
bδV . In general coordinates, that’s tatcRabc

bδV .
How would you apply Lie derivatives to solve this?
If you have a 3-volume element x ∧ y ∧ z where x, y, z are the 1-forms in the x, y and z

directions, then the volume acceleration is the Lie derivative of the 3-volume element wrt the
acceleration vector ac = wbR0b0

c.

La(x ∧ y ∧ z) = La(x) ∧ y ∧ z + x ∧ La(y) ∧ z + x ∧ y ∧ La(z)

La(x)b = ac
∇cxb + xc∇ba

c,

ac∇cxb = 0 since ac = 0 at the origin. ac = wbR0b0
c, so ∇ba

c = R0b0
c, so xc∇ba

c = R0b0
1.

So, La(x) ∧ y ∧ z = R0b0
1
∧ y ∧ z = R010

1x ∧ y ∧ z.
Summing over x, y and z, La(x ∧ y ∧ z) = R00x ∧ y ∧ z.
It’s a nice illustration of how to use Lie derivatives. I spent days thinking about it because I

didn’t understand Lie derivatives and I wanted to find out how you’d use them.
There might be a really profound way to use Lie derivatives to come up with the R0b0

d parts
of the Riemann tensor - by, say, looking at the time geodesics passing through a t = 0 surface
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in spacetime and finding geodesic deviation using Lie derivatives. But I haven’t come up with
it (yet).

Laura
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