
In sec. 25.8, he says ”recall the dual ∗F of the Maxwell tensor F. We could imagine a ’dual’
U(1) gauge connection that has ∗F as its bundle curvature” and then he says there’s a problem
with using the dual curvature of a nonabelian gauge. First, though, what happens if you try to
dualize the abelian electromagnetic gauge?

If you have the Maxwell tensor Fab, you can recover a vector potential A from it:

Ab(~x) =

∫ 1

0

uFab(u~x)x
adu

Similarly, if you take the Hodge dual ∗Fab of Fab, you can define a gauge potential from it
using a potential Z derived from ∗Fab

Zb(~x) =

∫ 1

0

u∗Fab(u~x)x
adu

This only works if d∗Fab = 0, i.e. the charge-current vector J = 0. It’s an application of the
Poincare’ lemma, which says that in a contractible (small, topologically simple) region, a form
F with dF = 0 is the exterior derivative of another form.

I totally wracked my brains about it and I couldn’t see how you could use ∗F as a gauge
curvature unless d∗F = 0.

And after I thought about it some more I figured that in the application of a dual gauge
connection, the field probably would be source-free, because the gauge connection’s applied to
quantum wavefunctions and when you’re at the quantum level, you wouldn’t have a charge-
current vector. Any charges and currents would be explicit as particle wavefunctions, not as the
field.

You could add any gradient dφ to Zb: Z
′

b
= Zb + ∂φ/∂xb gives the same ∗Fab.

From Z you can define a covariant derivative ∇aψ = ∂ψ/∂xa − ieZaψ. I guess this connection
would be applied to wavefunctions.

If you have a nonabelian gauge group SU(3), then you’d have a gauge connection

∇aψ = ∂ψ/∂xa − Caψ

. Here the Ca’s are matrices in the Lie group algebra of SU(3), operating on a wavefunction that
has a color index. So ψ = y1|red > +y2|green > +y3|blue > and |y1|

2 + |y2|
2 + |y3|

2 = 1, so that
the gauge group SU(3) is acting as transformations on S6. The dimension of the unitary group
U(3) is 32 = 9 (see sec. 13.10), so the dimension of the Lie algebra of SU(3), the unitary matrices
of determinant 1, is 8. I read later that there are basis elements for the Lie algebra, trace-free
3 × 3 Hermitian matrices called Gell-Mann matrices, for the inventor of the color theory.

The Ca’s are i× a Hermitian matrix. Since eiH is unitary if H is Hermitian, this gives you a
unitary transform if you’re integrating ∇a; taking a path integral, with the Lie algebra elements
varying over space should (though I haven’t shown it rigorously) integrate to a matrix in SU(3).
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The gauge transformation has to be unitary because it should preserve the inner product < ψ|φ >
of two wavefunctions. And the gauge transformation should not change the wavefunction of a
3-quark combination that’s been antisymmetrized with respect to color, because such a particle
is a free particle, so the covariant gauge derivative shouldn’t affect it. That implies it has
determinant 1.

The curvature of the connection ∇aψ = ∂ψ/∂xa − Caψ is

∇a∇b −∇b∇a =
∂Ca

∂xb
−
∂Cb

∂xa
+ CaCb − CbCa

This is a 2-form Sab with hidden color indices. With all the indices explicit, you get

Sabc
dψd = (

∂Cac
d

∂xb
−
∂Cbc

d

∂xa
+ Cac

eCbe
d − Cbc

eCae
d)ψc.

It’s like the Riemann tensor except that the c and d indices are color indices, not space indices.
Sab satisfies a Bianchi identity ∂S[ab/∂x

c] = 0, I checked.
I tried to find a curvature tensor for a connection with both a spacetime curvature and

curvature on the color indices (the gauge curvature), but it didn’t work, that is the commutator
(∇a∇b−∇b∇a)ψ didn’t work out to something multiplied by just ψ. Trying to quantize gravity!

You can find the Hodge dual ∗Sab and try to interpret it as a curvature tensor. But, with
a nonabelian gauge the commutator CaCb − CbCa doesn’t disappear, so the gauge curvature
doesn’t look like the exterior derivative of a form. So the Poincare’ lemma might not apply. If
you could show that ∗Sab doesn’t satisfy the Bianchi identity ∂∗S[ab/∂x

c] = 0, that would show
that ∗Sab isn’t a curvature tensor, at least for a connection of the form ∇aψ = ∂ψ/∂xa − Caψ -
since I checked that Sab does satisfy this Bianchi identity! The terms in the Bianchi identity for
∗Sab are a lot of complicated stuff that doesn’t look like it would have a habit of summing to 0.

If ∗Sab did satisfy the Bianchi identity ∂∗S[ab/∂x
c] = 0, maybe that would mean it’s a curvature

tensor for a connection of the form ∇aψ = ∂ψ/∂xa − Caψ. I don’t know, since the Poincare’
lemma doesn’t necessarily apply.

So that is my best take on a confusing exercise!
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