Q: Find a formula for gravitational time dilation near a body mass \(M \), given a timelike Killing vector \(\kappa \).

A: Suppose you have a particle of mass \(m \) falling from rest at \(\infty \), straight towards \(M \). It’s following a geodesic so the product \(p_a \kappa^a \) is conserved (see exercise 19.14). At \(\infty \), \(\kappa = (1, 0, 0, 0) \) and \(p_a = (mc^2, 0, 0, 0) \). At a distance \(R \) from \(M \), the particle has kinetic energy \(mMG/R \). So its energy is now \(m(c^2 + MG/R) \). Since the spacetime is stationary, the space components of \(\kappa \) are 0, \(\kappa = (\kappa^0, 0, 0, 0) \). By conservation of \(p_a \kappa^a \), \(mc^2 = \kappa^0 (m(c^2 + MG/R)) \), so \(\kappa^0 = 1/(1 + MG/Rc^2) \).

So why is this time dilation? It is in this sense at least: \(p_0 = \hbar \omega \) for a light ray, where \(\omega \) is frequency. Coming out of the gravitational field, by the conservation of \(p_a \kappa^a \), the frequency \(\omega \) decreases by a factor of \(1 + MG/Rc^2 \). That means that time seems to be going more slowly at the source of the light.

Also, \(\kappa \) is a vector field that describes how a spacelike (constant-time) slice of the spacetime evolves in time. You would evolve the spacelike slice an infinitesimal amount in time, by applying the \(\kappa \) vector to move each point a little along a geodesic in the time direction. Since the \(\kappa \) vector is shorter closer to \(M \), that means that time moves more slowly closer to \(M \).