
There are 2 mass distributions ρ1 and ρ2, and ρ2 is rigidly translated in space from ρ1, so
ρ2(~x + ~x′) = ρ1(~x). Also the new position of the mass distribution is at the same energy with
respect to any external gravitational field, so the potentials φ1 and φ2 are also rigidly translated
in space: φ2(~x + ~x′) = φ1(~x).

The gravitational self-energy of the difference between the two mass distributions is the
integral over all space (how grand it feels to say such things!)

−
∫

(ρ2(~x)− ρ1(~x))(φ2(~x)− φ1(~x))dx3

The exercise asks you to show that this integral is equal to
∫

(ρ2(~x)− ρ1(~x))φ1(~x)dx3, the
change in energy to move the mass distribution to the 2nd position, leaving the potential energy
it generates in the 1st position!

You might think that this is real easy. It’s obvious that
∫

ρ1(~x)φ1(~x)dx3 =
∫

ρ2(~x)φ2(~x)dx3.
And it might look obvious that

∫
ρ1(~x)φ2(~x)dx3 =

∫
ρ2(~x)φ1(~x)dx3.

You just switch positions 1 and 2, right?

Then
∫

ρ1(~x)φ2(~x)dx3 = 0, but
∫

ρ2(~x)φ1(~x)dx3 6= 0.
What one needs is a way to relate ρ and φ. They are related, by Poisson’s eq. ∇2φ = −4πρ.
That suggested to me Fourier transforming ρ and φ, since if φ = eixp, φ is proportional to ρ,

so
∫

ρ1(~x)φ2(~x)dx3 definitely is equal to
∫

ρ2(~x)φ1(~x)dx3.

The Fourier transform of φ1(~x) is
∫ ∞
−∞ g(~p)ei~x·~pdp (dropping a pesky factor of

√
2π). g(~p) =

g(−~p), so that φ1 is real.
So the Fourier transform of ρ1 is

∫ ∞
−∞ |q|

2g(~q)ei~x·~qdq (dropping another pesky factor of 4π)
What we’d like to show is that∫

g(~p)ei~x·~p|q|2g(~q)ei~x·~qei~x′·~qdpdqdx =

∫
g(~p)ei~x·~pei~x′·~p|q|2g(~q)ei~x·~qdpdqdx

where the integral is from −∞ to ∞ in p, q and x.
Switching the order of integration to integrate over x first, we notice that

∫
ei~x·(~p+~q)dx = 0

unless ~q = −~p, and in that case it’s a delta function.
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So the equality we want to prove simplifies to∫
g(~p)|p|2g(−~p)e−i~x′·~pdp =

∫
g(~p)|p|2g(−~p)ei~x′·~pdp

Since g(~p) = g(−~p) this becomes∫
|g(~p)|2|p|2e−i~x′·~pdp =

∫
|g(~p)|2|p|2ei~x′·~pdp

and that is true because both of the integrals are real-valued - since they are the integrals∫
ρ1φ2dx and

∫
ρ2φ1dx.

The gravitational self-energy would actually be twice the change in energy to move the mass
distribution away from its potential, but Roger Penrose doesn’t apparently care about scale
factors here.

That shows it if the mass distributions aren’t being moved to a different potential energy in
an external gravitational field. What if they are? Then φ2(~x + ~x′) = φ1(~x) + mgh, and the
integral −

∫
(ρ2(~x)− ρ1(~x))(φ2(~x)− φ1(~x))dx3 is changed from the case without the mgh term

by −
∫

mgh(ρ2(~x)− ρ1(~x))dx3, which is 0, so still the gravitational self-energy is the same as
the energy required to displace the mass distribution to its new position, leaving the potential
it generated in the old position (except for a factor of 2).

If the change in potential isn’t uniform over space, this equality would no longer hold.
Similarly, if you compress the mass while moving it, the gravitational self-energy would have

an additional term from the compression in position 2, and this equality wouldn’t hold. I didn’t
work out the full gory details of it, but the very goriality convinced me there was no need to.
The integrals were not going to turn out equal without the help of an erasing demon.

Laura
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