Q: Show how a manifold with a metric g_{ab} that respects the complex structure J_b^a is a symplectic manifold with symplectic form S_{ab} and $dS_{ab} = 0$.

A: I think what he means by the metric preserving the complex structure is, first, that if you "multiply two vectors v^a and w^b by i", i.e. by the J matrix, the dot product $v \cdot w$ is not affected, i.e. $v^a g_{ab} w^b = v^a J^c_a g_{cd} J^d_b w^b$.

Since this is true for general v and w, $g_{ab} = J_a^c g_{cd} J_b^d$. Multiplying each side by J_f^a , $J_f^a g_{ab} =$

 $(J_f^a J_a^c) g_{cd} J_b^d = -\delta_f^c g_{cd} J_b^d = -g_{fd} J_b^d.$ So if you define $S_{fb} = J_f^a g_{ab}$, then $S_{fb} = -S_{bf}$, and S is the symplectic form that was asked for.

"Preserving the complex structure" also means that the Levi-Civita connection ∇ derived from g_{ab} is "complex-linear", that is $\nabla_a(J_b^c v^b) = J_b^c \nabla_a v^b$. Since $\nabla_a(J_b^c v^b) = \nabla_a(J_b^c)v^b + J_b^c \nabla_a v^b$ by the Leibnitz rule, that means that $\nabla_a(J_b^c)v^b = 0$.

Since this is true for all $v, \nabla_a J_b^c = 0$.

Since $\nabla_a g_{bc} = 0$, also $\nabla_a S_{bc} = \nabla_a (J_b^d g_{dc}) = 0$.

As he says in Sec. 14.6, exercise 14.23, the exterior derivative d is independent of the choice of connection. So that shows right away that $\mathbf{d}S_{ab} = 0$.

 $\nabla_a J_b^c = 0$ also means that parallel transport preserves the complex structure. If $t^a \nabla_a v^b = 0$, which means that v^b is parallel transported along the curve t^a , then also $t^a \nabla_a (J^b_c v^c) = 0$, so that " iv^{b} " is also parallel transported.