Exercise 33.16

to show that the locus of points in CM# that are incident with a given twistor (Z1, 2%, 73, Z*)
is a self-dual plane, meaning the associated 2-form is self-dual. Similarly, the points in CM#
that are incident with the complex conjugate of the twistor are an anti self-dual plane.

I’ll just sketch this out, it’s too much algebra to write it all up explicitly in Latex. The metric
in Minkowski space is ds? = dt? — dx? — dy? — dz?, and it’s the same in complexified Minkowski
space, no complex conjugation is used.

A vector (t,z,y, z) in the plane that’s incident with (Z', Z% 73, Z) satisfies

< t+z x—i—iy)(ZQ)_(O)
r—1y t—=z z3 ) L0 )"
—(Z2)(t+2) = (2% (t - 2)
27273
(Z)°(t+2) + (%)t — 2)
IVAVA ‘
Settingt =0,z=1and t = 1,2 = 0, to get basis vectors for the plane:
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Lowering the index on ¢ and w to get 1-forms,
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Taking the wedge product (v Aw), = 3(VaWp — VpWa),
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v A'w is the 2-form tangent to the plane.

The Hodge dual *(v A W), = %eabcd(v Aw)®. Here €4, = 1.
v A w being self-dual means that *(v A W), = iv A w.
Raising the indices on v A w,
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and you can verify that it’s self-dual by doing the calculation.
A vector (t,z,y, z) in the plane determined by the dual twistor (Z2, Z3, Z0, Z1) satisfies
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and if you go through the same calculation, it turns out that this plane is anti self dual, which
means that *(v/ A w'),, = —iv/ Aw’ for v/ A w’ tangent to the conjugate plane.
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