Suppose you have n coins, and they are all the same weight except for one of them, which is
either lighter or heavier than the rest.

You have a balance scale, the kind with two dishes hanging from either end of a rod that is
supported in the middle. You need to figure out which is the odd coin, and whether it’s lighter
or heavier than the other coins. You only have the balance scale and the n coins to use in your
weighings.

What is the minimum number of weighings in which you can be sure to figure out which is
the odd coin, and whether it’s lighter or heavier than the rest?

Answer :

You can code the weighings of each coin by -1, 0, 1, where -1 means the coin is on the LH
side in a weighing, 0 means it’s not used in a weighing, and 1 means it’s on the RH side.

So, if you have k weighings, to each coin there’s associated a vector of dimension k, and each
coordinate is one of -1, 0, 1.

For example, with 3 coins and 2 weighings, the weighings could be described by (-1 1), (1 0),
(0 -1).

That means that first you weigh 1 vs 2, then 3 vs 1.

The vectors for different coins have to be different, in order to discriminate between the coins.
Also, the vector for one coin can’t be the negative of the vector for another coin, because you
have to discriminate between one coin being light and the other one being heavy. And because
an equal number of coins have to be on each side in a weighing, the coin vectors have to add up
to 0. So those are the constraints on the coin vectors.

This weighing scheme can be described by a matrix Wy = 1 0 -1

Here, Wy(i,5) = 1 if (4,7) is a coin vector; Wa(i,j) = —1 if (4, ) is a the negative of a coin
vector, i.e. the result of the weighings if that coin is lighter than the others. And Ws(i,j) = 0
if neither (7, 5) nor (—i, —j) is a coin vector.

Note that W5(i,j) =i — 7 mod 3.

The diagonal of W5 has zeroes. Why?

(0,0) can’t be used as a coin vector, because that would mean the coin isn’t weighed at all,
and you wouldn’t know if it was heavy or light.

There can’t be 3 coin vectors with £1 in the first coordinate, because the coin vectors have
to sum up to 0. So (1 1) and (-1 -1) can be eliminated as coin vectors.

Now we can add another weighing.

For each of the 3 coin vectors of dimension 2, make 3 coin vectors of dimension 3, with the
3rd coordinate one of {-1, 0, 1}.

So we have 9 3-dimensional coin vectors which sum up to 0:

(-11-1),(-110),(-111),(10-1),(100),(101),(0-1-1),(0-10), (0-11).



The excluded vectors (0 0), (1 1) and (-1 -1) can be extended to create 3 more coin vectors
of dimension 3: (-1-10), (00 1), and (1 1 -1), which add up to 0.
So for 3 weighings, we have a 3 x 3 x 3 array
0 -1 1 1 -1 1 -1 -1 1
Wi, j, )= 1 -1 =1 |:wa(i,5,00=( 1 0 -1 |:msG,5)=( 1 1 -1
-1 1 1 -1 1 -1 -1 1 0
Note that Ws5(i,i, k) = 2i + k mod 3, and the diagonal of Wj is again 0.
So in 3 weighings, you can find the answer for (3% — 3)/2 = 12 coins.
You can keep on adding weighings this way, and create a k-dimensional array W) with indices
{x1,...;zx} € {—1,0,1} describing the weighing strategy for (3* — 3)/2 coins.
If x1 # 29, then Wi (21, 29, ..., 1) = 21 — x5 mod 3, choosing a value from {-1, 0, 1}.

If zy = ... =z, and x41 # Ty then Wi(xy, 2o, ..., 2x) = 22, + Ty mod 3, choosing a value
from {-1, 0, 1}.
if x; = ... = xy then Wy (21,29, ..., 2x) = 0.

So that gives a weighing strategy for n coins, if n = (3% — 3)/2 for some k.
It’s not too hard to convince yourself that if (3¥~1 —3)/2 < n < (3% —3)/2, then you can find
the answer in k£ weighings.





