
If you have comments about these comments, you can email me at pbbl@cyberspace.org. To
get through my mail filter, include “glimful” in the Subject: line. I’ve tried to include all actual
mathematical errors, but not all the typos.

-Laura

p. 41, Theorem D12: The proof of this theorem depends on Lemma D11, and the proof of
that has an error, as Kenneth König notes. A proof that works can be found in Lars Hörmander’s
An Introduction to Complex Analysis in Several Variables, where it’s Theorem 2.5.10.

p. 54, last line OD → OE

p. 65, error in the proof of Corollary G6, in the step “the functions δD,R are a monotonically
increasing sequence of continuous functions in D, and hence these functions converge uniformly
on any compact subset of D.”

Apparently the idea is to apply Dini’s theorem. But Dini’s theorem only applies if the limit
function is continuous, and dD,W (z) isn’t necessarily continuous.

For example, let D be B(0; 10) ⊂ C with the set {z : Im(z) = 0,Re(z) ≤ 0} deleted. Then if
W = 1, dD,W (z) isn’t continuous.

However it is in fact true that dD(K) = dD(K̂D). If you rotate a polydisc with polyradius
I = (1, ..., 1) in all directions, it spins out a ball of radius

√
n. So

dD(z) = inf
T∈U(n)

δT (D), I√
n
(T (z)),

where T is a unitary transformation on Cn.
So

dD(K) = inf
z∈K

inf
T∈U(n)

δT (D), I√
n
(T (z)) = inf

T∈U(n)
inf
z∈K

δT (D), I√
n
(T (z)) =

inf
T∈U(n)

δT (D), I√
n
(T (K)) = inf

T∈U(n)
δT (D), I√

n
(T̂ (K)T (D)) = inf

T∈U(n)
δT (D), I√

n
(T (K̂D)) =

inf
T∈U(n)

inf
z∈ bKD

δT (D), I√
n
(T (z)) = inf

z∈ bKD

inf
T∈U(n)

δT (D), I√
n
(T (z)) = dD(K̂D).
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p. 69 At the end of the first paragraph: “setting ψ = Ψ|L, it is evident that ψ is a C∞

differential form...” But what if Ψ has terms involving dz̄n?
It turns out that the embedding map L → Cn induces a map from differential forms on Cn

to forms on L, which maps dz̄n and zn to 0. This map commutes with ∂̄, which means that
φ = ∂̄ψ.

p. 72 definition H1
Note that a Riemann domain M isn’t compact. If M were compact, then P (M) is compact.

But P is an open map, since it’s a local homeomorphism. So P (M) is open.

p. 73 Definition H2: Why is dM(Z) the distance to the boundary of the Riemann domain?
Why can’t P fail to be injective if expanded to a larger neighborhood, so that there is no
BM(Z; ε) for ε > dM(Z)? I think it can’t; maybe there’s an easier proof, but here comes the

Long Lemming: If Z ∈ M, and U is an open neighborhood of Z such that P |U is a homeo-
morphism onto a ball B(P (Z); r) ∈ Cn, and for every point b ∈ boundary(B)
∃z ∈ boundary(U) such that P (z) = b, then r < dM(Z).

Proof: First, if z1 ∈ boundary(U), then P (z1) ∈ boundary(B). Suppose not. Then
P (z1) ∈ B. There is a sequence {u1, ..., um, ...} ⊂ U that tends to z1. Since {P (u1), ..., P (um), ...}
is contained in a compact subset of B, {u1, ..., um, ...} is contained in a compact subset of U , so
{u1, ..., um, ...} has an accumulation point in U . Since M is Hausdorff, this is a contradiction.

So U contains all points in a connected component of P−1(B).
P is injective on boundary(U); to see this, suppose z1, z2 ∈ boundary(U) with P (z1) = P (z2).

Let U1, U2 be neighborhoods containing z1 and z2 which are mapped homeomorphically by P
to balls in Cn centered at P (z1) = P (z2). Make U1 and U2 small enough so that U1 ∩ U2 = φ.
U1∩P−1(B) is connected because P (U1)∩B is connected. There are elements of U in U1∩P−1(B),
since z1 ∈ boundary(U). Since U consists of all points in a connected component of P−1(B),
U1 ∩ P−1(B) ⊂ U. Also U2 ∩ P−1(B) ⊂ U. Let {b1, ..., bm, ...} be points in B ∩ P (U1) ∩ P (U2)
approaching P (z1). Then P |−1

U1
{b1, ..., bm, ...} ⊂ U ∩ U1 and P |−1

U2
{b1, ..., bm, ...} ⊂ U ∩ U2. Since

U1 ∩ U2 = φ, this contradicts injectiveness on U . So P is injective on boundary(U).
To see that boundary(U) is compact, notice that M , being a manifold, is metrizable. So the

Bolzano-Weierstrass theorem applies. Let {z1, ..., zm, ...} ⊂ boundary(U). {P (z1), ..., P (zm), ...},
which is an infinite set since P is injective on boundary(U), has a limit point b ∈ boundary(B).
There’s a point z ∈ boundary(U) with P (z) = b, by assumption. Let U1 be an open set
containing z that is mapped homeomorphically to a ball in Cn centered at b. There is an infinite
set {z′i1 , ...z

′
im , ...} ⊂ U1 such that P (z′im) = P (zim).

P (z′im) is the limit of a sequence {b1, ..., bk, ...} ⊂ P (U1) ∩B. So z′im is the limit of
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{P−1(b1), ..., P
−1(bk), ...} ⊂ U1 ∩ P−1(B), which is contained in U , as was proved above. So

z′im ∈ boundary(U). Since P is injective on boundary(U), z′im = zim , showing that z is a limit
point of {z1, ..., zm, ...}. So boundary(U) is compact.

So now we can show that P is a homeomorphism to a larger ball containing B. Let {U1, ..., Um}
be a finite cover of boundary(U) with open sets Ui such that P maps Ui homeomorphically to
a closed ball in Cn, centered on boundary(B). There’s a larger ball B′ ⊃ B centered at P (Z)
with B′ ⊂ B

⋃
i

P (Ui).

Suppose for z1, z2 ∈ U
⋃
i

Ui, P (z1) = P (z2). P (z1) /∈ B because Ui ∩ P−1(B) ⊂ U .

P (z1) /∈ boundary(B) because, as was shown earlier, Ui ∩ P−1 (boundary(B)) ⊂ boundary(U),
and P is injective on boundary(U).

So if P is not injective in a ball larger than B centered at P (Z), then for some i, j there
are infinitely many points {c1, ..., cm, ...} in P (Ui) ∩ P (Uj) approaching boundary(B), for which
P |−1

Ui
(cm) 6= P |−1

Uj
(cm),∀m. Since the cm’s are contained in a compact subset of Cn, they have

an accumulation point c, which is on boundary(B). By passing to a subsequence if necessary,
we can assume that {c1, ..., cm, ...} approaches c. There is a unique z ∈ boundary(U) such that
P (z) = c. z has a neighborhood V that is homeomorphic to a ball centered at c. Since P is
injective on Ui and Uj, P |−1

Ui
(c1, ..., cm, ...) and P |−1

Uj
(c1, ..., cm, ...) converge to z; so for m > some

finite number, P |−1
Ui

(cm) ∈ Ui ∩ V and P |−1
Uj

(cm) ∈ Uj ∩ V . But then P isn’t injective in V , a
contradiction. So P is injective in a ball concentric with B and larger than B. �

The proof of the lemma also works if B is replaced by ∆M(Z;R).
It’s easy to see that {ε : BM(Z; ε) ⊆ M} is closed. So the lemma shows that dM(Z) really is

the “distance to the boundary”.
The “long lemming” can be extended somewhat:
Long Lemma+: Suppose U is an open neighborhood of z ∈ M , where (M,P ) is a Riemann

domain, and P is a homeomorphism from U to an open set V in Cn, and for every point
b ∈ boundary(V ), there’s a point z ∈ boundary(U) with P (z) = b. Suppose further that there’s
a homeomorphism f from an open set V0 containing V into Cn, such that f(V ) is the ball B(0; 1).

Then P is injective on an open set U ′ containing U .
If there is no such homeomorphism from an open neighborhood of V to Cn, then it may not

be possible to extend P injectively. For example:
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The point x might have two different preimages in U , so P wouldn’t be injective on an open
set containing U. V is homeomorphic to a ball, but the homeomorphism can’t be extended to
an open neighborhood of V .

p. 76 Actually the spectrum of OM is the set of nonzero continuous algebra homomorphisms
T : OM → C.

p. 83, towards the end: “with the second inclusion necessarily a proper inclusion, and that
there exists a point B ∈ ∆(P (A); ρM,R(f ;A)R) such that B ∈ ∂∆(P (A); δM,R(A)R) ∩ ∂P (U)”

What if M looks like this?
As A approaches the center of the circle from the left, δM,R(A) → 0 so
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∆(P (A); δM,R(A)R) ⊂ P (U), if U = M .
The proof of this theorem in Gunning and Rossi doesn’t use this argument, and it seemed

fine to me. It’s Theorem G5 in that book.

p. 97, third line from the top
Mfν(a; ρ) →MFν(a; ρ)

p. 99, proof of Theorem J6 “The constants αν and βν are monotonically decreasing as ν tends
to ∞ ...”

This isn’t necessarily true, but the proof works all the same. Since

αν =
Mfν(a; r1)−Mfν(a; r2)

ln r1 − ln r2
and βν =

Mfν(a; r2) ln r1 −Mfν(a; r1) ln r2
ln r1 − ln r2

,

αν and βν aren’t necessarily monotonically decreasing.
But MFν(a; r) is linear in ln r, so if either limνMFν(a; r1) = −∞ or limνMFν(a; r2) = −∞,

then limνMFν(a; r) = −∞ for almost all r ∈ [r1, r2], which is a contradiction since
Mu(a; r) > −∞ for almost all r ∈ [r1, r2].

p. 102 A function u : Cn → R is harmonic if
n∑

j=1

∂2u

∂x2
j

+
∂2u

∂y2
j

= 0.

p. 108, Lemma K10 - the second assertion is that if u is locally Lebesgue integrable, the
functions uε converge to u in L1 norm on any compact subset of D.

What the proof shows is that the {uε} converge to u in L1 norm on an open set U ⊂ D with
compact closure in D.

But why not substitute an arbitrary compact set K ⊂ D for U in the proof, and integrate
over K instead of over U?

By the way, the boundary of an open set in Cn doesn’t necessarily have measure 0, so inte-
grating over U isn’t equivalent to integrating over U . For example, let U =

⋃
Ui, where the Ui

are balls of measure
1

2i
, centered at the rational points in ∆(0; 10).

Same comment applies to the third assertion of Lemma K10.
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p. 110, last paragraph: “it follows from Fatou’s lemma in measure theory that ...”
I’m not sure if Fatou’s lemma can be applied here, but it’s not necessary. Because u is upper

semicontinuous, for a given δ > 0 you can find ε such that sup{u(Z+ εW ), |W | < 1} < u(Z)+ δ.
Then

uε(Z) =

∫
∆(0;1)

u(Z + εW )σ(W )dV (W ) <

∫
∆(0;1)

(u(Z) + δ)σ(W )dV (W ) = u(Z) + δ.

Since δ was arbitrary, lim
ε→0

uε ≤ u.

The reason Fatou’s lemma may not apply is that we’d be taking the limit of monotonically
decreasing functions gn(W ) = sup{u(Z + εW ), 0 ≤ ε < 1/n}, and it’s not clear to me that gn

must be measurable.

p. 116 towards the end:
Should be “the pseudonorms ||f ||ν =

∫
Kν
|f(Z)|dV (Z) define this topology”, rather than∫

Kν
|f(Z)|2dV (Z).

L1
loc(R

n) * L2
loc(R

n), although L2
loc(R

n) ⊂ L1
loc(R

n) because of the Schwarz inequality.

p. 117 Corollary K17. The conclusion of the proof should be “u is necessarily equal to a
plurisubharmonic function almost everywhere in D.”

p. 119 The proof of Theorem L2 uses the fact that the roots of a polynomial are continuous
functions of its coefficients, in the statements about the eigenvalues of Lv and Lu′A.

Click here for a proof of this fact.
This means that Cn/Sn, the quotient space of Cn by permutations on the coordinates, is

homeomorphic to Cn via the map between roots of polynomials of degree n and their coefficients
(!)

p. 130, first paragraph: “it follows from the assumption that D is pseudoconvex in the sense
of Hartogs that I is a closed subset of [0, 1].”

It doesn’t follow directly. Slightly altered proof: An open subset of [0, 1] is a union of disjoint
open intervals intersected with [0, 1]. If I isn’t the whole of [0, 1], a connected component of
I is an open or half-open interval, e.g. (a, 1]. But, because D is pseudoconvex in the sense of
Hartogs, I also contains a, which is a contradiction.
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p. 130, after the proof of Theorem M3: “dD ... can be replaced by any function d of the
form ... where E is any open neighborhood of the origin in Cn with the property that tE ⊆ E
whenever t ∈ [0, 1].”

This is not true. The continuity of dD depends on the fact that if Z ′ is close to Z, then a ball
around Z contains a slightly smaller ball around Z ′.

Suppose the set E looks like this:

The point at the center is the origin. If Z ′ is displaced slightly downwards from Z, an
E-shaped neighborhood around Z doesn’t contain a slightly smaller E-shaped neighborhood
around Z ′, so the distance function dE defined by E is not continuous.
E can be described as “starshaped around 0”, meaning that tE ⊆ E for t ∈ [0, 1]. Similarly,

E would be starshaped around w if t(E − w) + w ⊆ E for t ∈ [0, 1].
Continuity condition: If E is an open neighborhood of the origin in Cn, and there is an

open neighborhood U of the origin such that for any z ∈ U , E is starshaped around z, then
the distance function dE defined on a domain D ⊆ Cn by dE(z) = sup{k : kE + z ⊆ D} is
continuous.

Proof: We want to show that if z′, z ∈ D, |z′ − z| < δ, then |dE(z′) − dE(z)| < ε, where δ
may depend on z. It’s enough to show that (dE(z)− ε)E + r ⊆ dE(z)E for |r| ≤ δ if δ is small
enough; this means that dE(z′) ≥ dE(z)− ε if |z′ − z| ≤ δ. By symmetry, this would mean that
δ can also be found small enough so that dE(z′) ≤ dE(z) + ε.
U contains a ball of radius 2b > 0 and E contains a ball of radius 2B > 0, both centered at

the origin. B can be taken to be ≥ b. Let y ∈ E, and r ∈ Cn, |r| = b and r perpendicular to y, as
vectors in R2n. Then the right angle triangle spanned by 0, y, r is contained in E (see diagram).
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So a circle of radius d =
kb√

1 +
b2

|y|2

centered at (1− k)y is contained in E.

Since this is true for all r with |r| = b and perpendicular to y, a ball of radius d centered at
(1− k)y is contained in E.

If |y| < B, a ball of radius B centered at (1− k)y is contained in E. Since B ≥ b, this means

that for all y ∈ E, a ball of radius
kb√

1 +
b2

B2

centered at (1− k)y is contained in E.

So, to find δ such that dE(z′) ≥ dE(z)− ε if |z′ − z| < δ, set

k =
ε

dE(z)
, so δ =

εb√
1 +

b2

B2

.

dE is actually uniformly continuous! �
The continuity condition is probably necessary as well as sufficient.
Also, E must be bounded if it is to generate a distance function dE that can be substi-

tuted for dD in Theorem M3. Otherwise dE might be 0 for z ∈ D; then −ln(dE) wouldn’t be
plurisubharmonic.

If E is bounded and it satisfies the continuity condition, dE can be substituted for dD in
Theorem M3.
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p. 131, paragraph just before Theorem M6:
“a holomorphically convex subset D ⊆ Cn does not admit an exhaustion function of the form

|f | where f is holomorphic in D. That is a well-known observation in the case n = 1.”
D = C is a counterexample in the case n = 1. Since any open set in C is holomorphically

convex, D is. The sets |z| ≤ r are compact, so |z| is an exhaustion function.
It is true if D ⊂ C is bounded though. Suppose f is analytic on D and |f | is an exhaustion

function. Since the zeroes of f are contained in a compact subset of D, there are only finitely
many of them. So f can be divided by a polynomial p(z), resulting in a function f ′ that is
nonzero in D. Since p(z) is bounded on D, |f ′| is also an exhaustion function on D. But then
by the maximum modulus theorem, 1/f ′ is constant on the connected component of D where f ′

attains its minimum, so f ′ can’t be an exhaustion function.
It’s also true in Cn, n > 1. In that case, take K to be {z ∈ D : f(z) = 0}. K is a thin subset

of D (see Defn. D1). By Corollary D3, D −K is connected. So Theorem E6 can be applied.

p. 131, proof of Theorem M6: “dD(Z) = limνdDν (Z)”
It’s clear that dD(Z) ≥ limνdDν (Z). Suppose dD(Z) > limνdDν (Z). Then there’s a closed

ball B(Z; r) of finite radius which has non-empty intersection with any DC
ν , but B(Z; r)∩

⋂
ν

DC
ν

is empty. Since B(Z; r) is compact, this can’t happen.

p. 133 In the proof of Theorem M9, there’s a statement that if B is an open connected
subset of Rn, −ln dB is a convex function in B iff B is convex. This is true, and here’s a

Proof: If B is convex, and the line segment x1x2 ⊂ B, then
dB(λ1x1 + λ2x2) ≥ λ1dB(x1) + λ2dB(x2), for λ1, λ2 > 0 and λ1 + λ2 = 1.

So ln (dB(λ1x1 + λ2x2)) ≥ ln(λ1dB(x1) + λ2dB(x2)) ≥ λ1ln(dB(x1)) + λ2ln(dB(x2)),

so −ln dB is convex.
Now suppose B isn’t convex. Then there are points x1, x2 ∈ B with x1x2 not contained in

B. But there’s a path P in B between x1 and x2. P can be covered by a finite number of balls
centered at points in P and contained in B. x1 can be connected to x2 via the centers of these
balls, by a path consisting of line segments contained in B.

So, let P ′ be a path in B using the minimal number of line segments to connect x1 and x2.
Let a1a2 and a2a3 be adjacent line segments in P ′, and at = (1− t)a2 + ta3, for t between
0 and 1. Let t0 = inf {t : a1at * B}. Then a1at0 is contained in B but not in B.

For some t slightly less than t0, the path a1at satisfies:
max(−ln dB) on a1at > max(−ln dB(a1),−ln dB(at0)) + 1, and
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−ln dB(at) < −ln dB(at0) + 1.
Then on a1at, −ln dB isn’t convex.

p.138 “If every plurisubharmonic function in D extends to a pseudoconvex set E ⊃ D, then
since D is preserved by arbitrary translations in the imaginary direction, it is evident that ... E
must also be a tube domain.”

This is only clear if we know that pseudoconvex domains are domains of holomorphy, which
hasn’t been proved yet.

Suppose we tried to prove it, only knowing that E is pseudoconvex. Assuming E is properly
contained in convex hull(D), from Theorem M3 the function u = −ln dE is plurisubharmonic in
E and can’t be extended to ch(D). But this doesn’t serve to derive a contradiction. Using the
invariance of D under imaginary translations, for s ∈ Rn we can define a function us which is
plurisubharmonic on E+is and is equal to u on D. But extensions of plurisubharmonic functions
aren’t necessarily unique, so we can’t conclude from this that u must have a plurisubharmonic
extension to ch(D).

If we know that a pseudoconvex open set is a domain of holomorphy, then it’s easy to see that
E must be ch(D). If E ( ch(D), then there a point z ∈ boundary(E)∩ch(D). If Aν is a discrete
sequence of distinct points in E approaching z, by theorem G7 there’s a function f ∈ OE such
that lim supν |f(Aν)| = ∞. So f can’t be extended to ch(D) contrary to Theorem D12.

p. 140, proof of Theorem N3, (i) ⇒ (ii) step:
G can be extended to 1 ×∆(0; 1) by defining G(1, z) as an accumulation point of G(t, z) as

t→ 1 (Call the accumulation point p). How does it follow that G is continuous on [0, 1]×∆(0; 1)?
There’s a neighborhood U of p that is mapped homeomorphically by P to a ball B(P (p); r)

in Cn.
Since F is continuous on [0, 1]×∆(0; 1), for ε > 0 there is δε such that if

||(t, z′)− (1, z)|| < δε, ||F (t, z′)−F (1, z)|| < ε. Here [0, 1]×∆(0; 1) is given a metric as a subset
of R3. Clearly, P (p) = F (1, z).

So G(B((1, z); δr) ∩ [0, 1) × ∆(0; 1)) ⊂ P−1(B(P (p); r)). But, from the Long Lemming (see
my comments on pg. 73), U is the whole of a connected component of P−1(B(P (p); r)). Since
B((1, z); δr)∩ [0, 1)×∆(0; 1) is connected, G(B((1, z); δr)∩ [0, 1)×∆(0; 1)) ⊂ U and p is the only
accumulation point of G(t, z′) as (t, z′) → (1, z). So if G(1, z) is defined to be p, G is continuous
on [0, 1]×∆(0; 1).

p. 141, proof of Theorem N3, (ii) ⇒ (iii) step:
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First, the notation can be simplified a lot by observing that there’s a homeomorphism of Cn

that sends A+Bz to z(1, 0, ..., 0). So without loss of generality one can assume that P (H(z)) =
(z, 0, ..., 0). In what follows I’ll suppress the other dimensions of Cn, and simply write P (H(z)) =
z.

The proof requires extending GW from 0 × ∆(0; 1) to [0, δ) × ∆(0; 1) and [0, 1] × ∂∆(0; 1).
Since GW must equal P−1FW , GW is well-defined and continuous if P maps a connected subset
of M containing H(∆(0; 1)) injectively onto the range of FW .
GW can be extended to [0, 1]× ∂∆(0; 1) via the Long Lemma+ (see my comments on p. 73).

Let T be the sup of all t such that P maps a connected subset of M containing H(∆(0; 1))
injectively onto

Ut = ∆(0; 1) ∪
⋃

z∈∂∆(0;1)

B(z; t|e−p(z)|),

where B(z; t|e−p(z)|) is a ball in the one-dimensional complex plane.
The aim is to show that T ≥ 1, since then GW can be extended to [0, 1] × ∂∆(0; 1). T > 0

since P ◦H is injective on an open neighborhood of ∆(0; 1).
For a single point z, Ut,z = ∆(0; 1) ∪ B(z; t|e−p(z)|) is “smoothly starshaped”, meaning that

there is open neighborhood V of 0 such that for w ∈ V and s ∈ [0, 1], sUt,z + (1 − s)w ⊆ Ut,z.
See diagram below.

If w is between lines L1 and L2 in B(0; 1), Ut,z is starshaped around w.
Since t|e−p(z)| has a nonzero minimum on ∂∆(0; 1), Ut is also smoothly starshaped.
Since Ut is smoothly starshaped, the function ρ(θ) = sup{r : reiθ ∈ Ut} is continuous, as you

can see from the diagram below.
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Ut is starshaped with respect to a ball B(0; b), so, since the line from 0 to the apex of the
triangle is in Ut, the whole triangle is in Ut. As ∆θ → 0, r′ approaches ρ(θ). Since
ρ(θ + ∆θ) ≥ r′, ρ(θ) is continuous.

So ft defined by ft(z) = z/ρ(θ(z)) for z 6= 0 and ft(0) = 0 is a homeomorphism of C which
maps Ut to B(0; 1).

Since (M,P ) is a Riemann domain, MC = P−1(C × 0 × ... × 0) is also a Riemann domain,
with projection map P . Let WT ⊂MC be the connected open set containing H(∆(0; 1)) that is
mapped injectively to UT by P .

Suppose that T < 1. Since |e−p(z)| is bounded away from 0 for z ∈ ∂∆(0; 1), UT ⊂ Ut for
T < t, so UT ⊂

⋂
t>T

Ut.

Let b be a point in boundary(UT ). d(b, c)/e−p(c) is a continuous function of c ∈ ∂∆(0; 1), so
it attains its infimum. The infimum must be T since otherwise b /∈ Ut for some t > T . So,
b ∈ B(c, T |e−p(c)|) for some c ∈ ∂∆(0; 1), and there’s a neighborhood Y of H(c) in MC that’s
mapped injectively to B(c, |e−p(c)|), and z ∈ Y such that P (z) = b. The subset of WT that is
mapped by P to B(c, T |e−p(c)|) and the subset of Y that is mapped to B(c, T |e−p(c)|) are the
same, since they both contain H(c). So z ∈ boundary(WT ).

This means that for every point b′ in boundary(B(0; 1)), there’s a point z ∈ boundary(WT )
such that P ′(z) = b′.

By the Long Lemma+, P is injective on an open set W ′ containing W T , and P (W ′) ⊃ UT .
Since |e−p(z)| is bounded for z ∈ ∂∆(0; 1), UT ′ ⊂ P (W ′) for some T ′ > T , which contradicts

the maximality of T .
So T ≥ 1, and GW can be extended to [0, 1]× ∂∆(0; 1).
For a given k ∈ (0, 1), take δk to be the sup of δ’s such that P maps an open neighborhood
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of H(∆(0; 1)) in MC injectively onto
⋃

z∈∆(0;1)

B(z; δk|e−p(z)|)
⋃ ⋃

z∈∂∆(0;1)

B(z; k|e−p(z)|).

Since |e−p(z)| is bounded on ∆(0; 1), δk > 0.
Suppose δk ≤ 1. If |W | = k,GW can be defined as a continuous function on

[0, δk) × ∆(0; 1) ∪ [0, 1] × ∂∆(0; 1). Since M is pseudoconvex in the sense of Hartogs, GW can
be extended to a continuous map on [0, δk]×∆(0; 1) ∪ [0, 1]× ∂∆(0; 1).

If δk < 1, then

P

 ⋃
|W |=k

GW

(
[0, δk]×∆(0; 1) ∪ [0, 1]× ∂∆(0; 1)

) =
⋃

z∈∆(0;1)

B(z; δkk|e−p(z)|)
⋃ ⋃

z∈∂∆(0;1)

B(z; k|e−p(z)|).

This is a smoothly starshaped set, and closed by the same arguments as used above. P is
injective onto the interior of

⋃
z∈∆(0;1)

B(z; δkk|e−p(z)|) , so by the Long Lemma+, P is injective

onto an open neighborhood of
⋃

z∈∆(0;1)

B(z; δkk|e−p(z)|).

Since |e−p(z)| is bounded on ∆(0; 1), this contradicts the maximality of δk.
So δk ≥ 1, which means that d(H(z)) ≥ k|e−p(z)|, ∀z ∈ ∆(0; 1) and any k ∈ (0, 1). So

d(H(z)) ≥ |e−p(z)|, ∀z ∈ ∆(0; 1), which means that −ln(dM) is plurisubharmonic in M .

p. 142, definition of w(Z), near the top of page:
The set {Z : w(Z) ≤ r} isn’t compact if dM(B) < r, so w isn’t an exhaustion function for M .
What’s probably intended is to define w(Z) = max (−ln dM(Z), v(Z)), where v(Z) is the

infimum of the length of continuously differentiable paths from Z to B. So defined, w really is
a continuous exhaustion function for M .

The proof works, using the redefined w.

p. 142 equation (1) becomes

|v(Z1)− v(Z2)| ≤ |P (Z1)− P (Z2)|

p. 142, middle of page
“it is only necessary to choose ε sufficiently small that ∆(0; ε) ⊂ ∆(0; 1/ν) or ∆(0; ε) ⊂

∆(0;R/ν)”
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Should be “∆(0; ε) ⊂ B(0; 1/ν) or ∆(0; ε) ⊂ ∆(0;R/ν)”

p. 142, last quarter of page:
“for any real number c the set X = {Z ∈ M : w(Z) < c} has a compact closure in M , and

therefore the set Xε =
⋃

Z∈X ∆(Z; ε) is a compact subset of M”
Should be “for any real number c the set X = {Z ∈ Mν : w(Z) < c} has a compact closure

in M , and therefore the set Xε =
⋃

Z∈X ∆(Z; ε) is a compact subset of M”

Xε is compact because it’s closed in M and it’s contained in the compact set
{Z ∈M : w(Z) ≤ sup

Z∈Xε

w(Z) <∞}.

p. 142, near end of page:
“identifying an open neighborhood of the point Z ∈M with the polydisc ...”
Should be “Z ∈Mν”.

p. 143, middle of page
“δ−1|w(Z + δEj + εT )− w(Z + εR)| ≤ δ−1||δEj|| = 1”
becomes with the new definition of w
“δ−1|w(Z + δEj + εT )− w(Z + εR)| ≤ k−1δ−1||δEj|| = 1/k,”
where k is the nonzero minimum value of dM on the compact set Xε.
This is because, for Z1, Z2 ∈ Xε and close enough to be in a neighborhood that’s mapped

homeomorphically to Cn,
|w(Z1)− w(Z2)| ≤ max (|ln dM(Z1)− ln dM(Z2)|, |v(Z1)− v(Z2)|), and

|ln dM(Z1)− ln dM(Z2)| =
|dM(Z1)− dM(Z2)|

dM(Z ′)
≤ k−1|dM(Z1)− dM(Z2)|,

for some dM(Z ′) between dM(Z1) and dM(Z2).
Since |dM(Z1)− dM(Z2)| ≤ |P (Z1)− P (Z2)|,

|v(Z1)− v(Z2)| ≤ |P (Z1)− P (Z2)| and k < 1, we get
|w(Z1)− w(Z2)| ≤ k−1|P (Z1)− P (Z2)|.
Because of this change, further down page 142 we have
|Lwε(Z;A)| ≤ Ck−1ε−1n2||A||2 and
vν(Z) = wε(Z) + 2Ck−1ε−1n2||P (Z)||2.
The rest of the proof is still valid with these changes.
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p. 145, end of page: “for any integer ν the subset Mν = {z ∈ M : u(Z) < ν} also satisfies
the hypothesis of this theorem and has a compact closure in M .”

First, it should be “compact closure in N .”
To see that Mν satisfies the hypothesis of the theorem, first notice that the set

Nν = {Z ∈ N : u(Z) < ν} is pseudoconvex, because it has a continuous plurisubharmonic
exhaustion function

φ(u(Z)) =
1

1
u(Z)

− 1
ν

φ ◦ u is plurisubharmonic since φ is monotonically increasing and convex, and u is plurisub-
harmonic. (see Theorem K5(d))

Suppose A ∈ ∂Mν = ∂(M ∩ Nν) ⊆ ∂M ∪ (M ∩ ∂Nν). If A ∈ ∂M , by the hypothesis of the
theorem there’s a neighborhood UA of A such that UA ∩M is pseudoconvex. By Theorem N5,
UA ∩Mν = (UA ∩M) ∩Nν is pseudoconvex.

If A ∈ M ∩ ∂Nν , take UA to be a ball centered at A and contained in M . UA is pseudo-
convex because any convex set is holomorphically convex, and holomorphically convex sets are
pseudoconvex. So UA ∩Nν is the intersection of pseudoconvex sets, so it’s pseudoconvex.

p. 146, top of page - Generalizing Theorem M11 to Riemann domains.
Condition (iii) in Theorem M11 reads “Whenever K ⊆ D is compact, then the subset

{A ∈ D : u(A) ≤ sup
Z∈K

u(Z) for all plurisubharmonic functions u in D}

is disjoint from an open neighborhood of ∂D”
What is an “open neighborhood of the boundary” for a Riemann domain?
On p. 101 of From Holomorphic Functions to Complex manifolds by Fritzsche and Grauert

(viewable at books.google.com), an accessible boundary point of a Riemann domain M is defined
as a sequence of points {Zi} ∈M such that

1. {Zi} has no cluster point in M
2. The sequence {P (Zi)} has a limit point z ∈ Cn

3. For every connected open neighborhood V 3 z in Cn, there is N such that if n,m > N ,
there’s a path ρ : [0, 1] →M between Zn and Zm such that P ◦ ρ([0, 1]) ⊂ V .

This suggests that for Riemann domains (iii) should be replaced by

(iii)′: Whenever K ⊆M is compact, then the subset

L = {A ∈ D : u(A) ≤ sup
Z∈K

u(Z) for all plurisubharmonic functions u in D}

satisfies the condition that:
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For a sequence of points {Zi} ⊂ L, if
1. The sequence {P (Zi)} approaches a limit z in Cn, and
2. For every ε > 0, there is N such that for n,m > N , Zn and Zm can be connected by a

path ρ : [0, 1] →M such that P ◦ ρ([0, 1]) ⊂ B(z; ε),
then {Zi} has a cluster point in M .

Condition (iii)′ implies that the metric completion of L is contained in M , using the metric
where d(Z1, Z2) is the infimum of the lengths of continuously differentiable paths in M from Z1

to Z2.
The metric topology on M is the same as the topology it has as a Riemann domain.
If the projection map is injective on M , so M is homeomorphic to a domain in Cn, then (iii)

implies (iii)′.
However, (iii)′ doesn’t imply (iii). Take L = {(x, sin(1/x)), 0 < x ≤ 1/2}, and let M be the

union of balls B((x, y);x3), (x, y) ∈ L.
L satisfies (iii)′, but M doesn’t intersect the y-axis, so the interval 0 × [−1, 1] ⊂ ∂M . But

L isn’t disjoint from an open neighborhood of 0 × [−1, 1], so it doesn’t satisfy condition (iii).
The points in 0× [−1, 1] are not “accessible” boundary points of M , as defined by Fritzsche and
Grauert. But the inaccessible boundary points don’t matter in Theorem M11, since (iii)′ can be
used to prove the theorem for Riemann domains.

Conditions (i) and (ii) in Theorem M11 can be used as is for Riemann domains.
For Riemann domains in general, (ii) implies (iii)′, since if L is compact, a sequence {Zi} in

L has a cluster point.
(iii)′ ⇒ (i) by an argument similar to that in Theorem M11. The essentially novel part is

between hedges of #.
Consider a continuous mapping F : [0, 1] × ∆(0; 1) → Cn such that F is holomorphic in

∆(0; 1) for each fixed point of [0, 1] and G : ([0, 1) × ∆(0; 1)) ∪ (1 × ∂∆(0; 1)) → M is a

continuous mapping such that P ◦ G = F . If we show that G can be extended to a continuous
map from [0, 1]×∆(0; 1) →M , that will prove M is pseudoconvex.

The image G([0, 1] × ∂∆(0; 1)) = K is a compact subset of M , so condition (iii)′ applies to
the set
L = {A ∈M : u(A) ≤ sup

Z∈K
u(Z) for all plurisubharmonic functions u in M}.

For any fixed point t ∈ [0, 1], any constant ε > 0, and any plurisubharmonic function u in M ,
note that since G(t× ∂∆(0; 1)) ⊆ K and u is upper semicontinuous in M , then
u(A) < sup

Z∈K
u(Z) + ε for all points A in an open neighborhood of G(t × ∂∆(0; 1)) in M , and

consequently u(G(t, z)) < sup
Z∈K

u(Z) + ε for all points z in an open neighborhood of ∂∆(0; 1)

in ∆(0; 1). But u(G(t, z)) is actually a subharmonic function of z ∈ ∆(0; 1), since G(t, z) is a
holomorphic function of z, so it follows from the maximum theorem for subharmonic functions
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that u(G(t, z)) < sup
Z∈K

u(Z) + ε for all points z ∈ ∆(0; 1). This is true for any value ε > 0, and

therefore u(G(t, z)) ≤ sup
Z∈K

u(Z) for all points z ∈ ∆(0; 1). But the latter inequality is true for

any plurisubharmonic function u, and therefore G(t, z) ∈ L for all points z ∈ ∆(0; 1). Thus,
altogether G([0, 1)×∆(0; 1)) ⊆ L.

######
Suppose {(ti, zi)} ⊂ [0, 1)×∆(0; 1) is a sequence approaching (1, z), for some z ∈ ∆(0; 1).
Since P ◦G(ti, zi) → F (1, z), {G(ti, zi)} satisfies 1. in condition (iii)′.
{G(ti, zi)} also satisfies 2. in (iii)′: For ε > 0, find δ such that if |(t, z′) − (1, z)| < δ,

|F (t, z′) − F (1, z)| < ε. Then find N such that, for n > N , |F (tn, zn) − F (1, z)| < ε. Then, for
n,m > N and λ ∈ [0, 1], |P ◦G(λ(tn, zn) + (1− λ)(tm, zm))− F (1, z)| < ε.

So, by (iii)′, {G(ti, zi)} has a cluster point Z in M . Necessarily P (Z) = F (1, z).
There’s an open neighborhood U 3 Z that is mapped homeomorphically by P to a ball

B(F (1, z); r) in Cn. If s is small enough, F (B((1, z); s)) ⊆ B(F (1, z); r), so G(B((1, z); s)) ⊆
P−1B(F (1, z); r). SinceG(B((1, z); s)) is connected and U is the whole of a connected component
of P−1B(F (1, z); r), G(B(1, z); s)) ⊆ U . So if {(t′i, z′i)} is another Cauchy sequence in [0, 1) ×
∆(0; 1) approaching (1, z), {G(t′i, z

′
i)} also approaches Z; so that G(1, z) is well-defined as the

limit of G(ti, zi).
Since P is a local homeomorphism, the extended G is continuous on [0, 1] × ∆(0; 1), which

proves the theorem.
######

p. 147, definition of the Riemann domain M :
In chapter O, it’s generally assumed that M is σ-compact. By Theorem H3, if M is connected,

it is second countable (that is, the topology of M has a countable basis) so it is σ-compact. The
theorems and lemmas in this chapter can be proved for each connected component of M . So
theorem 9, which is the the aim of the arguments in chapter O, is true for any pseudoconvex
Riemann domain, σ-compact or not.

p. 148, definition of sign function at the top of the page:
The sign function is actually two different functions, and which is meant in the text depends

on the context.
If I, J are complementary multi- indices, that is I is mapped to J by *, then the sign function

is the Levi-Civita tensor in n dimensions:
sign(IJ) = 1 if (i1, ..., ip, j1, ...jn−p) is an even permutation of (1, ..., n),
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sign(IJ) = −1 if (i1, ..., ip, j1, ...jn−p) is an odd permutation of (1, ..., n),
sign(IJ) = 0 if (i1, ..., ip, j1, ...jn−p) isn’t a permutation of (1, ..., n).
This is the definition that’s used in equation (3).

If I, J aren’t complementary multi-indices, then the sign function is as defined at the top of
page 148. That’s what’s meant by sign(IM) and sign(JN) on p. 149.

p. 156, middle of page:
Should be

||∂φ− ∂φν ||2v ≤ 2
∗∑

I,J

∫
M

e−v(1− ρν)
2|(∂φ)I,J |2dV +2

∗∑
I,J

∫
M

e−v

∣∣∣∣∣
∗∑
K

∑
k

∂ρν

∂zk

φI,K sign(kKJ)

∣∣∣∣∣
2

dV,

so the expression on the RH side should be twice what’s in the text. From (9),

(∂φ− ∂φν)I,J = (−1)p

∗∑
K

∑
k

(
∂φI,K

∂zk

(1− ρν)− φI,K
∂ρν

∂zk

)
sign(kKJ)

and setting

z1 =
∗∑
K

∑
k

∂φI,K

∂zk

(1− ρν),

z2 =
∗∑
K

∑
k

φI,K
∂ρν

∂zk

,

since |z1 − z2|2 = |z1|2 + |z2|2 − z1z2 − z1z2 and |z1 + z2|2 = |z1|2 + |z2|2 + z1z2 + z1z2,
|z1z2 + z1z2| ≤ |z1|2 + |z2|2.
So |z1 − z2|2 ≤ 2|z1|2 + 2|z2|2, which gives the expression above for ||∂φ− ∂φν ||2v.
This change doesn’t cause any problems in the rest of the proof.

p. 156, lower half of page:
“The second term is bounded from above by

∗∑
I,K

∫
M

e−v|φI,K |2
(∑

k

∣∣∣∣∂ρν

∂zk

∣∣∣∣2
)
dV ”

should be
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2qn
∗∑

I,K

∫
M

e−v|φI,K |2
(∑

k

∣∣∣∣∂ρν

∂zk

∣∣∣∣2
)
dV

since for complex numbers z1, ..., zq, |z1 + ... + zq|2 ≤ q (|z1|2 + ...+ |zq|2), and similarly for
the summation over k.

This change doesn’t cause any problems in the rest of the proof.

p. 157, equation for ||Dwuφ−Dwuφν ||2w at the top of the page:
The RH side of the equation should be twice what it is in the text, since (as in my comments

on p. 156), for complex numbers z1 and z2, |z1 + z2|2 ≤ 2|z1|2 + 2|z2|2. Also, as Ken König
commented, the exponent −w − u should be replaced by w − u. And the first summation over
I, J should have an asterisk on the top.

This change doesn’t cause any problems in the rest of the proof.

p. 157, bottom of page
“v is also strictly plurisubharmonic”: If ρ′ = 0 this isn’t true. So ρ is actually assumed to be

strictly monotonically increasing.

p. 158 The integrals

∗∑
I,J

∫
Mν+1−Mν

...

should be

∗∑
I,J

∫
Mν+1−Mν

...

p. 160, first paragraph
“If θ ∈ Ep,q−1

M (should be q − 1, not q) satisfies condition (i) of the preceding theorem, ...
∂θ = φ.”
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If θ satisfies condition (i), then (σ, ∂θ − φ)u = 0,∀σ ∈ Ep,q
cM . Since ∂θ − φ ∈ Ep,q

M ,
ρν(∂θ − φ) ∈ Ep,q

cM , so
∫

M
ρν |∂θ − φ|2 = 0. Since ρν = 1 on Uν , this means that∫

Uν−Uν−1
|∂θ − φ|2 = 0. This is true for all ν, so

∫
M
|∂θ − φ|2 = 0; so ∂θ − φ = 0.

p.161, end of page
“consider first an arbitrary linear partial differential operator D : Ep,q

M → Ep,q
M ...”

Is (Dφ)I,J = D(φI,JdzI ∧ dzJ)? Or could D, say, map φI,JdzI ∧ dzJ to φI,JdzI′ ∧ dzJ ′? It’s
not clear, but the set Wp,q

ν defined on p. 162 is the same, whichever definition is chosen. For the
operators D : Ep,q

M → Ep,q
M used in the text, (Dφ)I,J = D(φI,JdzI ∧ dzJ).

p. 163, first line of proof of Lemma 8:
Should be

“choose an open neighborhood ∆ of Ã in M such that an open neighborhood of ∆ is mapped
biholomorphically”,
since the norms in the proof are over ∆.

p. 163, middle of page
“the differential forms Dψε converge uniformly on ∆ as ε tends to zero. That evidently implies

that the forms ψε converge uniformly on ∆ to a C∞ differential form ψ as ε tends to 0.”
To prove this, it’s enough to show that if D is a first-order operator, say D = ∂/∂xi, then

Dψ exists and is equal to lim
ε→0

Dψε.

For arbitrary z ∈M ,∫ z+∆xi

z

lim
ε→0

∂ψε/∂xi = lim
ε→0

∫ z+∆xi

z

∂ψε/∂xi = lim
ε→0

ψε(z + ∆xi)− ψε(z) = ψ(z + ∆xi)− ψ(z).

lim
ε→0

∂ψε/∂xi is continuous, being the limit of a uniformly convergent series of continuous

functions. So ∂ψ/∂xi exists and is equal to lim
ε→0

∂ψε/∂xi.

p. 164, equation (23)
Ken König got his edit wrong here - the equation is right as it is.
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p. 165, end of proof of Theorem 9: “The set K was arbitrary, and since lim
ε→0

D′θε = θD′
...”

To see that θD′
exists, find compact sets Kν : Kν ⊂ interior(Kν+1) and

∞
∪

ν=1
Kν = M . On

each Kν , D
′θε converges to σν ∈ Wp,q−1

0 in L2
Kν

-norm. Since
||D′θε − σν+1||Kν ≤ ||D′θε − σν+1||Kν+1 , σν+1 = σν on Kν almost everywhere. So σν+1 can be

redefined to be equal to σν on Kν . Then σ can be defined on M by σ(Z̃) = σν(Z̃) if Z̃ ∈ Kν .
Now let α ∈ Ep,q

cM , with compact support K. K ⊆ Kν for some ν.
(D′θε, α) = (θε, D

′∗α), and lim
ε→0

(D′θε, α) = (σ, α) by the Schwarz inequality, and

lim
ε→0

(θε, D
′∗α) = (θ,D′∗α), also by the Schwarz inequality. So (σ, α) = (θ,D′∗α), which shows

that θD′
can be defined equal to σ. Which really does conclude this long detailed proof! Go

have a cup of coffee!

p. 170, Oka’s counterexample:
“However, the integral

∫
γ0
d log h0 is nonzero”

I don’t see how “γ0 is homotopic to a loop in a complex plane transverse to M”, so I did an
explicit calculation.
h0 = 0 at (t1, t2) = (π/3, 2π/3).
Let γ0 be an infinitesimal loop around (π/3, 2π/3), with displacement (−∆t1,−∆t2) to

(∆t1,−∆t2) to (∆t1,∆t2) to (−∆t1,∆t2) to (−∆t1,−∆t2).
At (z1, z2) = (eiπ/3, e2iπ/3), the gradient of h is in the same direction as the gradient of

z1 − z2 − 1, so ∂h/∂z1 = α and ∂h/∂z2 = −α, for some α ∈ C. So h0 varies around the loop
from

α(−i∆t1eiπ/3 + i∆t2e
2iπ/3) to

α(i∆t1e
iπ/3 + i∆t2e

2iπ/3) to
α(i∆t1e

iπ/3 − i∆t2e
2iπ/3) to

α(−i∆t1eiπ/3 − i∆t2e
2iπ/3) to

α(−i∆t1eiπ/3 + i∆t2e
2iπ/3).

Because arg(eiπ/3) 6= arg(e2iπ/3), the values of h0 trace a quadrilateral around 0.

p. 170, end of page “for any C∞ function f on M there exists a C∞ function g on M such
that f = ∆g.”

There’s a proof of this, at least if M is an open subset of Cn, in Lars Hörmander’s Linear
Partial Differential Operators(1969).

Here’s how it works. A domain D ⊆ Rn is called P -convex if to every compact subset K ⊂ D
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there exists another compact subset K ′ ⊂ D such that φ ∈ C∞
0 (D) and support P (−D)φ ⊂ K ⇒

support φ ⊂ K ′. (Def. 3.5.1 in Hörmander’s book)
In the above, P is a polynomial in R[x1, ..., xn], and D = −i(∂/∂x1, ..., ∂/∂xn), so P (−D) is

a linear partial differential operator. In the case of the Laplacian operator ∆, P = x2
1 + ...+ x2

n.
If D is P -convex, the equation P (D)g = f has a solution in C∞(D) for every f ∈ C∞(D).

(Corollary 3.5.2)
A differential operator P (D) of order m is called elliptic if its principal part Pm(D), that

is, the homogeneous part of P (D) of order m exactly, satisfies the condition Pm(~x) 6= 0 when
~x ∈ Rn 6= 0 (Def 3.3.2). The Laplacian, then, is an elliptic operator.

Every open set D ⊆ Rn is P -convex iff P is elliptic. (Corollary 3.7.1). �

Laura
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