I'm reading Lars Hormander's book on multivariable complex analysis and I'm puzzled by something.

In Theorem 2.3.2' the suppositions are:

Let Ω be a bounded open set in \mathbb{C}^n , n > 1, such that the complement of $\overline{\Omega}$ is connected and $\partial \Omega \in C^4$. Let ρ be a real valued function in C^4 such that $\rho = 0$ precisely on $\partial \Omega$ and $\operatorname{grad}(\rho) \neq 0$ on $\partial \Omega$. Let $u \in C^4(\overline{\Omega})$ and $\overline{\partial} u \wedge \overline{\partial} \rho = 0$ on $\partial \Omega$. Then, one can find an analytic function $U \in C^1(\overline{\Omega})$ such that U = u on $\partial \Omega$.

I don't know what he means by $\partial \Omega \in C^4$, but that isn't the question. I figure maybe if it's a typo maybe it'll become clear what it means later.

Otherwise: $\overline{\Omega}$ is the closure of Ω

 $\partial \Omega$ is the boundary of Ω

 $C^{k}(S)$ is k times continuously differentiable complex-valued functions on S.

$$\bar{\partial}u = \sum_{i=1}^{n} \frac{\partial u}{\partial \bar{z}_i} d\bar{z}_i$$

Now here's the question. He says in the proof that by assumption, $\bar{\partial}u = h_0\bar{\partial}\rho + \rho h_1$, $h_0 \in C^3(\bar{\Omega})$.

You could do a least squares fit of $\bar{\partial}u$ to a multiple of $\bar{\partial}\rho$. But that has a problem: the least squares fit would blow up when $\operatorname{grad}(\rho) = 0$, which it would be somewhere in Ω .

So how do you determine h_0 in Ω ? $K = \{z \in \overline{\Omega} : \operatorname{grad}(\rho) = 0\}$ is compact. There is a smooth function S with S(z) = 1 for $z \in K$, and $\operatorname{support}(z) \subset \Omega$. Define $f(z) = S(z)\overline{\partial}\rho(z) + (1 - S(z))\overline{\partial}u(z)$, and define h_0 as the least squares fit of f(z) to $h_0(z)\overline{\partial}\rho(z)$. Then $h_0(z)$ doesn't diverge when $\operatorname{grad}(\rho) = 0$.