He says that the vector field \(\frac{\partial f}{\partial \omega_0} \frac{\partial}{\partial \omega^1} - \frac{\partial f}{\partial \omega^1} \frac{\partial}{\partial \omega_0} \) operates on \(\mathbb{PT} \).

In the usual vector notation this is \((-\frac{\partial f}{\partial \omega^1}, \frac{\partial f}{\partial \omega_0}, 0, 0)\). This works as a vector field on \(\mathbb{PT} \) because the homogeneity degree of \(\frac{\partial f}{\partial \omega_0} \frac{\partial g}{\partial \omega^1} - \frac{\partial f}{\partial \omega^1} \frac{\partial g}{\partial \omega_0} \) is the same as the homogeneity degree of \(g \). Which is good, because a function on \(\mathbb{PT} \) has to be of homogeneity degree 0 to be well-defined, and \(\frac{\partial f}{\partial \omega_0} \frac{\partial g}{\partial \omega^1} - \frac{\partial f}{\partial \omega^1} \frac{\partial g}{\partial \omega_0} \) is a function on \(\mathbb{PT} \).

While the paint is drying, \(\omega \) is shifted to \(\omega' \), which satisfies the differential equation
\[
\frac{d\omega'(s)}{ds} = \left(-\frac{\partial f(\omega')}{\partial \omega^1}, \frac{\partial f(\omega')}{\partial \omega_0}\right), \quad \text{and} \quad \omega'|_{s=0} = \omega.
\]
The value of \(\omega \) when the paint is dry is \(\omega' \) at some value of \(s \), say \(s = 1 \).

He says that an area measure can be defined on the \(\omega \)-fibers, which are twistors \((\omega, \pi)\) with a fixed value of \(\pi \). That’s because shifting the \(\omega \)-coordinates doesn’t change the magnitude of \(d\omega_0 \wedge d\omega^1 \). Shifting an infinitesimal \(ds \), \(d\omega_0 \wedge d\omega^1 \) changes to
\[
\left(-\frac{\partial^2 f}{\partial \omega_0 \partial \omega^1} ds + 1, \frac{\partial^2 f}{\partial (\omega^0)^2} ds\right) d\omega_0 \wedge \left(-\frac{\partial^2 f}{\partial (\omega^1)^2} ds, \frac{\partial^2 f}{\partial \omega^1 \partial \omega_0} ds + 1\right) d\omega^1,
\]
and the terms that are linear in \(ds \) cancel.